
Risque des rayonnements ionisants

I- Généralités

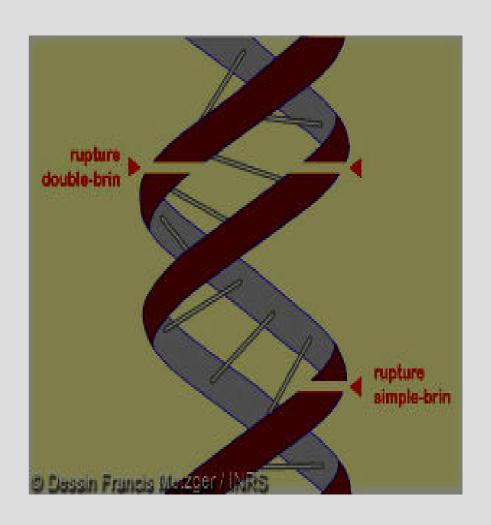
II- Et si grossesse?

Répartition des doses reçues par un individu en France

Exposition médicale: 1,6 mSv/an (41%)

Exposition naturelle 2,3 mSv/an (59%)

Effets biologiques des rayonnements ionisants ADN lésée


Réparation parfaite: aucun

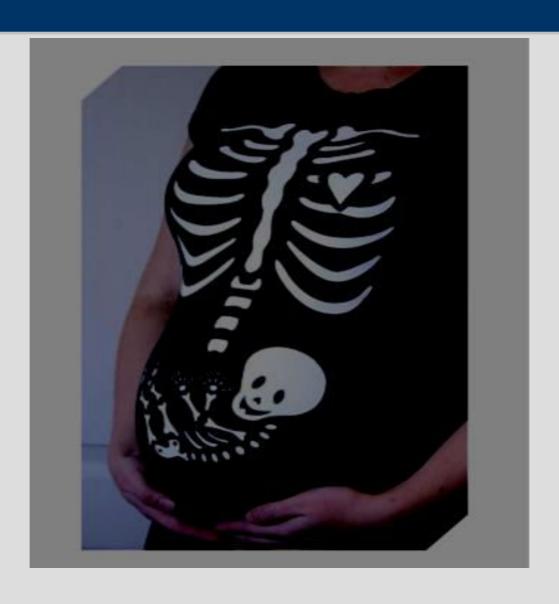
effet sur l'organisme

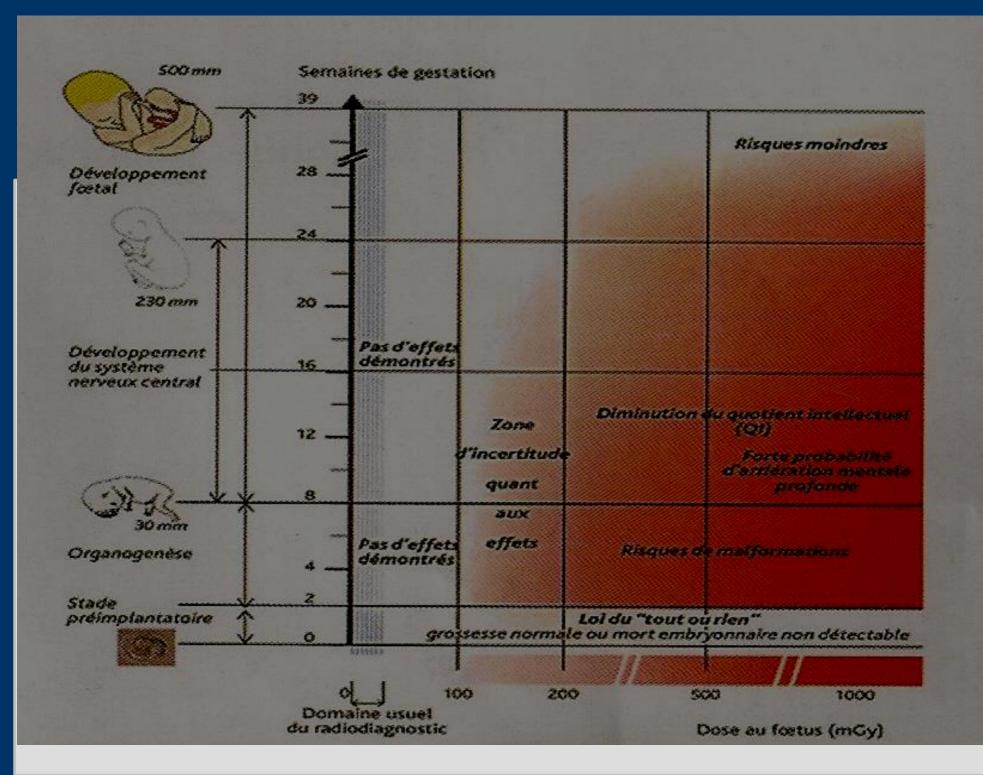
Réparation imparfaite: survie altérée, mutation EFFETS STOCHASTIQUES

Réparation impossible: mort cellulaire par nécrose ou apopthose EFFETS DETERMINISTES

Cancer: PLUSIEURS mutations de l'ADN sur des GENES CLES de l'apopthose.

DOSES




- **Absorbée** (PDS ou DLP) 1Gy = 1J/kg (indiquée par l'appareil)
- **Equivalente** (dose pondérée par le type de rayonnement) : rayons X : 1Gy = 1Sv (mesurée par dosimètres)
- Efficace (dose pondérée selon la radiosensibilité des organes), celle qui mesure le risque de su d'effets stochastiques (calc par radiophysicien)

Quelques exemples

TYPE D'EXPOSITION	DOSE EFFICACE	
exposition naturelle annuelle à Paris	2,3 mSv/an	
exposition journalière à bord de l' ISS	1 mSv/jour	
A/R Paris-New York	0,08 mSv	
radio thoracique standard de face	0,02 mSv soit 2,4 j	
CT thorax standard	5,3 mSv soit 2,2 ans	
CT thorax basse dose	2 mSv soit 1 an	
CT abdomen	11,6 mSv soit 5 ans	
CT pelvis	9,1 mSv soit 4 ans	
CT abdo+pelvis	9 ans dexposition naturelle	

et si grossesse?

Exemples de doses à l'utérus

		Minimum	Maximum
D !' ! '			
Radiographie			
	ASP	1,4 mSv	4,2 mSv
	rachis lombaire	1,7 mSv	10 mSv
	thorax	inf à 0,01 mSv	inf à 0,01mSv
Tomodensitométrie			
	abdomen	8 mSv	49 mSv
	pelvis	25 mSv	79 mSv
	rachis lombaire	2,5 mSv	22 mSv
	thorax	inf à 0,06 mSv	inf à 0,9 mSv

Effets stochastiques

Effets stochastiques (pas de seuil):

probabilité de survenue de leucémies, lymphomes, cancers, augmente avec la dose, non prévisible

pas d'effets sur des cohortes de mères exposées (Hiroshima, Nagasaki, Tchernobyl)

En pratique

- -Rassurer la patiente si radiographie conventionnelle
- -En tomodensitométrie
- Si l'exploration n'a pas concerné l'abdomen ou le pelvis :
- La dose est toujours inférieure à 1 mSv
- Pas de calcul de la dose à l'utérus
- Rassurer la patiente et expliquer qu'il n'y a pas d'augmentation du risque naturel de malformation de 3%
- Si l'exploration a concerné l'abdomen :
- Dose généralement inférieure à 50 mSv
- Si doute, faire faire calcul de dose par un radiophysicien
- Si dose supérieure à 100 mGy
- J1/J9 : loi du tout ou rien
- J9/S9 : IMG discutée (conseillée à partir de 200 mGy)
- S9/terme: rassurer